PROJECT DISCO: PHYSICS-BASED DISCOVERY OF COHERENT STRUCTURES IN SPATIOTEMPORAL SYSTEMS

Adam Rupe ^{1 2}
Karthik Kashinath ², Nalini Kumar ³,
James P. Crutchfield ¹, Ryan G. James ¹, and Prabhat ²

¹Department of Physics Complexity Sciences Center University of California, Davis

 ${}^{2}{\rm NERSC}$ Lawrence Berkeley National Laboratory

³Intel®

Big Data Summit 2018

PROJECT DISCO

John Travolta in 'Saturday Night Fever' (Paramount)

- ▶ The Science Problem
- ► The Theory
- ▶ The Computation
- ▶ The Unsupervised Ladder
- ► The HPC Challenge

Project DisCo

John Travolta in 'Saturday Night Fever' (Paramount)

- ▶ The Science Problem
- ► The Theory
- ▶ The Computation
- ▶ The Unsupervised Ladder
- ► The HPC Challenge

on track for SC'19 Gordon Bell submission

THE SCIENCE PROBLEM

Unsupervised detection (segmentation) of spatiotemporal structures in climate

THE SCIENCE PROBLEM

Unsupervised detection (segmentation) of spatiotemporal structures in climate

THE THEORY: COMPUTATIONAL MECHANICS

Think of this as a physics-based machine learning technique Segmentation achieved through use of $local\ causal\ states$

THE THEORY: COMPUTATIONAL MECHANICS

Think of this as a physics-based machine learning technique Segmentation achieved through use of $local\ causal\ states$

Causal states defined through the causal equivalence relation

$$\mathrm{past}_i \ \sim_{\epsilon} \ \mathrm{past}_j \ \Longleftrightarrow \ \mathrm{Pr}\left(\mathrm{Future}|\mathrm{past}_i\right) = \mathrm{Pr}\left(\mathrm{Future}|\mathrm{past}_j\right)$$

Lightcones used as local notions of past and future

$$\ell_i^- \sim_{\epsilon} \ell_j^- \iff \Pr\left(\mathbf{L}^+ | \ell_i^-\right) = \Pr\left(\mathbf{L}^+ | \ell_j^-\right)$$

$$\ell_i^- \sim_{\epsilon} \ell_j^- \iff \Pr\left(\mathbf{L}^+ | \ell_i^-\right) = \Pr\left(\mathbf{L}^+ | \ell_j^-\right)$$

- Training
 - 1. Reconstruct $\operatorname{morph}(\ell_i^-) = \Pr\left(L^+ | \ell_i^-\right)$
 - extract (ℓ^-, ℓ^+) pairs from sample fields
 - ▶ for real-valued fields, need to cluster space of lightcones

$$\ell_i^- \sim_{\epsilon} \ell_j^- \iff \Pr\left(\mathbf{L}^+ | \ell_i^-\right) = \Pr\left(\mathbf{L}^+ | \ell_j^-\right)$$

- Training
 - 1. Reconstruct $\operatorname{morph}(\ell_i^-) = \Pr(L^+|\ell_i^-)$
 - extract (ℓ^-, ℓ^+) pairs from sample fields
 - ▶ for real-valued fields, need to cluster space of lightcones
 - 2. Cluster together pasts with same morph resulting clusters are *local causal states*
 - ▶ gives ϵ -map; $\epsilon(\ell_i^-) = \xi_{\ell_i^-} = \{\ell_j^- \ : \ \ell_j^- \sim_\epsilon \ell_i^-\}$

$$\ell_i^- \sim_{\epsilon} \ell_j^- \iff \Pr\left(\mathbf{L}^+ | \ell_i^-\right) = \Pr\left(\mathbf{L}^+ | \ell_j^-\right)$$

- ► Training
 - 1. Reconstruct $\operatorname{morph}(\ell_i^-) = \Pr(L^+|\ell_i^-)$
 - extract (ℓ^-, ℓ^+) pairs from sample fields
 - ▶ for real-valued fields, need to cluster space of lightcones
 - Cluster together pasts with same morph resulting clusters are local causal states
 - ▶ gives ϵ -map; $\epsilon(\ell_i^-) = \xi_{\ell_i^-} = \{\ell_j^- \ : \ \ell_j^- \sim_\epsilon \ell_i^-\}$
- ► Inference
 - 1. Use ϵ -map to perform causal filtering; $\mathbf{x} \to \mathcal{S} = \epsilon(\mathbf{x})$
 - ightharpoonup Segmentation semantics from structural properties of ${\cal S}$

THE UNSUPERVISED LADDER

No labeled data – no error metric to optimize

THE UNSUPERVISED LADDER

No labeled data – no error metric to optimize

Built from physical theory

validation established using physical principles

broken symmetry

Step 1 – Cellular Automata

A. Rupe and J.P. Crutchfield (2018). Local Causal States and Discrete Coherent Structures. arXiv preprint arXiv:1801.00515.

STEP 2 - COUPLED MAP LATTICES

Step 3 - Vortex Shedding

Step 4 – Bickley Jet

Candidate data set for SC'19 GB submission

Hadjighasem, A., Farazmand, M., Blazevski, D., Froyland, G., & Haller, G. (2017). A critical comparison of Lagrangian methods for coherent structure detection. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(5), 053104.

Step 5 - Transitional / Turbulent Flow

Candidate data set for SC'19 GB submission

THE HPC CHALLENGE

- ▶ Clustering very high-dimensional lightcone data
 - ▶ kmeans vs dbscan
- ▶ Multi-node clustering in Python
- ▶ Efficient use of memory

OUTCOMES

Completed Papers:

- ▶ A. Rupe, J.P. Crutchfield, K. Kashinath, and Prabhat (2017).
 A Physics-Based Approach to Unsupervised Discovery of Coherent
 Structures in Spatiotemporal Systems,
 Lyubchich, V., N. C. Oza, A. Rhines, and E. Szekely, eds., 2017:
 Proceedings of the 7th International Workshop on Climate Informatics: CI
 2017. NCAR Technical Note NCAR/TN-536+PROC, 132 pp,
 doi:10.5065/D6222SH7. arXiv:1709.03184 [physics.flu-dyn]
- A. Rupe and J.P. Crutchfield (2018). Local Causal States and Discrete Coherent Structures. arXiv preprint arXiv:1801.00515.
 Accepted for publication in Chaos: An Interdisciplinary Journal of
 - Nonlinear Science
- A. Rupe and J.P. Crutchfield (2018). Spacetime Symmetries, Invariant Sets, and Additive Sub-Dynamics of Cellular Automata. Preparing for submission.

Planned Manuscripts:

- ▶ A. Rupe and J.P. Crutchfield (2018). Spacetime Computational Mechanics.
- ▶ Structural Semantics of Local Causal States, Part 1: Contamination.
- ▶ Structural Semantics of Local Causal States, Part 2: Coherence Detection.
- ▶ Local Causal States and Lagrangian Coherent Structures.

OUTCOMES

Presentations:

- ► Seminar Center for Nonlinear Dynamics, UT Austin, 2016
- Talk APS Far West Section, 2016
- ▶ Poster AGU Fall Meeting, 2016
- ► Talk Dynamics Days, 2017
- ► Talk 7th Annual UC Davis Math Conference, 2017
- Poster 7th International Workshop on Climate Informatics, NCAR, 2017
- Poster Intel HPC Developer Conference, 2017
- ► Talk 70th Annual Meeting of the APS Division of Fluid Dynamics, 2018
- Poster Dynamics Days, 2018
- Poster Intel AI Dev
- Talk Information Engines at the Frontiers of Nanoscale Thermodynamics, Telluride Science Research Center

Thank You!